
The Electronic Journal of Mathematics and Technology, Volume 14, Number 2, ISSN 1933-2823

Coding and GUI Use in the Teaching of
Undergraduate Numerical Analysis

Paul W. von Dohlen
vondohlenp@wpunj.edu

Department of Mathematics
William Paterson University

Wayne, NJ 07470 USA

Abstract

In this paper we will investigate different approaches to using coding and graphical user in-
terfaces (GUIs) in the teaching of an undergraduate numerical analysis class. When learning
about numerical methods, it is essential that students experience applications of the methods to
problems for which hand calculations would be excessively tedious. In order to do so, an instruc-
tor can use various levels of coding based on, amongst other factors, the computing proficiency
of the intended students. Thus, the instructor can use approaches ranging from pre-programmed
graphical user interfaces (GUIs) to complete code creation and implementation. Here, we will ex-
plore the possible methods while noting observations based on the author’s personal experience.
Ultimately, the instructor must decide what level of coding is appropriate for the course so as to
use the computing experiences most effectively.

1 Introduction
The teaching of numerical analysis underwent a major reformation beginning in the 1960s and ac-
celerating during the 1980s and 1990s, first because of the advent of computing machines and then
because of the increased power and availability of personal computers. Much of the early change
in the approach to numerical analysis can be credited to George E. Forsythe and were examined in
his 1959 paper “The Role of Numerical Analysis in an Undergraduate Program” appearing in The
American Mathematical Monthly [5]. Forsythe detailed the need for computational mathematics as
part of the undergraduate mathematics curriculum and listed numerous examples of where such in-
vestigations could take place within a variety of mathematical areas. The study of numerical analysis
is no longer limited to mathematics as it can be found in computer science, engineering and the sci-
ences. Forsythe’s influence and accomplishments were so noteworthy that Donald Knuth [10] wrote:
“It is generally agreed that he more than any other man, is responsible for the rapid development of
computer science in the world’s colleges and universities.” Of relevance here is that the issues and
concerns posed by Forsythe are still pertinent to the modern day study of numerical analysis. In fact,
Forsythe even responds to a common mathematical criticism of the area of numerical computation in



The Electronic Journal of Mathematics and Technology, Volume 14, Number 2, ISSN 1933-2823

stating that the student “should learn that collaboration with an automatic computer compels precise
formulation of the problem and 100 percent accuracy in the preparation of the code. In this respect
the automatic computer really forces the precision of thinking which is alleged to be a product of any
study of mathematics.” [5]

Over three decades later, in 1992, Carroll [4] examined specifically how computer software can
and has been used in the teaching of numerical analysis. Carroll offers a quite comprehensive study of
the various approaches (at that time) to integrating computer explorations into the numerical analysis
curriculum. The paper is of particular note because it characterizes the shift towards incorporation
of actual computer code and programs into the teaching and textbooks of numerical analysis. Even
more recently we have seen textbooks which use the actual numerical computing as the foundation
for teaching the concepts of numerical analysis; for example, Cleve Moler has authored a text called
“Numerical Computing with MATLAB” [12] in which the topics of numerical analysis are introduced
directly via computing explorations in MATLAB. It should also be noted that in the 1980s the CIText
group, founded by members of five British universities, created a number of computer illustrated texts
(CITs), including one for numerical analysis, designed to pair the use of traditional textbook material
with computer explorations. Further information concerning the computer illustrated text project can
be found in an article by Harding and Quinney [7]. More recently, numerical analysis coding with
Python has been the focus of a number of studies including those detailed in articles by Michal Kaukic
[8] and David I. Ketcheson [9].

In this paper we will examine the particular question of how the use of GUIs and computer coding
can be employed in an undergraduate numerical analysis course to varying degrees. Because of issues
such as goals of the course, levels of student computer proficiency and availability of computing
resources, it is necessary to examine various approaches for incorporating the use of computers in the
numerical analysis course. We will investigate approaches ranging from the use of widely available
graphical user interfaces (GUIs) to more extensive computer code generation and implementation.
Some resources will also be provided.

2 Various Approaches
Before surveying the different approaches to incorporating software/coding into a numerical analysis
course, it is important to consider the reasons for employing such different approaches. Based on the
author’s personal experience, the three primary driving forces behind the choice of an approach are the
intended goal of the course, the coding proficiency of the students and the availability of computing
resources (hardware and software). These conditions will obviously shape the nature of course and
therefore must be taken into account.

While most would agree on the importance of seeing the numerical methods “in action” as part
of a numerical analysis course, the extent to which time and effort should be devoted to this end is
debatable. The process of coding, debugging and producing graphical output is time-consuming and
has the potential to dominate the students’ energy and focus thus limiting the amount of material
which can be covered. The overall goal of the course within a particular program must be considered.
If the course is intended to be an introduction to numerical methods with the intent of surveying the
numerous computational topics within mathematics, then it may be appropriate to limit the extent of
coding. Whereas if the intent of the course is to prepare students for further use of these methods,

108



The Electronic Journal of Mathematics and Technology, Volume 14, Number 2, ISSN 1933-2823

as might be applicable for future engineers, it may be quite beneficial to devote significant time and
effort to the intricacies of the coding and implementation.

Possibly the most important factor in determining the level of coding involved in a numerical anal-
ysis course is the level of computing proficiency of the students. Even though the use of computers
and technology has exploded over the past few decades, many students lack the requisite program-
ming skills and experience necessary to make coding a significant component of a numerical analysis
course. Thus one must consider the amount of programming experience of the students or famil-
iarity with a specific software or computing environment before deciding on an appropriate use of
software/coding. If a significant amount to coding is to be required, it may be necessary to have a
programming course as a prerequisite.

Many instructors of a numerical analysis course will choose to use a computing environment such
as MATLAB or a computer algebra system such as Mathematica or Maple. While commercially avail-
able software can simplify the amount and level of coding as well as provide robust graphical output
capabilities, there are associated drawbacks. Kaukic [8] analyzes many of the advantages and disad-
vantages of using commercial software and also considers open-source alternatives, namely Python.
One of the most significant drawbacks to the commercially available software is the cost which may
be prohibitive for some numerical analysis courses. Furthermore, the availability of computer labs
and other physical resources may limit the ability to incorporate software/coding into the numerical
analysis course. Yet, if available, these software packages can provide powerful environments for
computer explorations of the numerical methods.

Thus there are pedagogical and practical reasons for deciding on a level of software/GUI/coding
inclusion in a numerical analysis course. Note that each of these approaches aims to address the
analyze-evaluate-create levels of Bloom’s taxonomy with the more active coding involvement leaning
more towards the create level. We will now examine four different approaches, with varying levels of
coding, any one of which could be appropriate given the factors mentioned above and others.

2.1 Approach I: GUIs
In recent years, the availability of graphical user interfaces (GUIs) dealing with numerical methods
has expanded greatly. Allowing students to explore the implementation of numerical methods through
mouse-clicks, drop-down windows and input boxes provides the opportunity for instructors to quickly
and effectively introduce the implementation of the numerical methods without the overhead of pro-
gramming. Numerous examples can be investigated in a short time and the students can easily play
with the GUI to explore standard cases as well as any “pitfall” examples which show the possible
limitations of the method.

As an example, consider the interpolation GUI provided by Atkinson [1] and shown in figure 1.
This GUI works well because of its simplicity and ability to provide useful information both visually
and numerically. Users of the GUI can select from a list of functions, vary the order of interpolation,
change the interval and also visualize the error. A sample assignment using this GUI could be:

Using the Polynomial Interpolation GUI, which uses evenly-spaced nodes to create
the polynomial interpolant,

a. Create plots of the function f (x) = ex along with its nth-order polynomial inter-
polant for n = 1, 2, 3, 5, 10.

109



The Electronic Journal of Mathematics and Technology, Volume 14, Number 2, ISSN 1933-2823

Figure 1: Polynomial Interpolation GUI

b. Create plots of the error in the polynomial interpolant for each case in part (a).

c. How does the error in the linear and quadratic case compare with calculated error
bounds?

d. Try using f (x) = 1/(1 + x2). What happens in this case as n increases? Can
you offer an explanation?

Atkinson has created a number of these GUIs which can be run under MATLAB [11]. Moler’s
textbook [12], through its online companion site, provides a number of MATLAB GUIs to correspond
with the material coverage in the book. Others have written similar GUIs which are not MATLAB-
based; for example, another popular numerical analysis text by Burden and Faires [3] offers (via
website) numerous java programs (amongst other materials) designed to offer quick and informative
visualizations of numerical methods.

The use of such GUIs provides a solid option for instructors teaching a numerical analysis course
to students with no or very limited programming experience and for whom it is simply not possible to
spend the time and/or resources overcoming those deficits. Based on the experience of the author, the
GUIs provide valuable quick insight opportunities and can be added easily to a course. Admittedly,
there is a great deal of understanding accomplished through the programming of these methods (and
the authors of the GUIs often suggest using them in conjunction with some programming) but the use
of these GUIs should provide valuable illustrations of the implementation of the numerical methods,
especially to students who would otherwise not do any computer explorations. Furthermore, GUIs

110



The Electronic Journal of Mathematics and Technology, Volume 14, Number 2, ISSN 1933-2823

can be used alongside more involved coding explorations (such as those described below) as they
provide visualizations which would require additional coding dealing with plotting features which
may extend beyond the scope of relevance to the methods.

2.2 Approach II: Code Modification
Even in the case where the students have had some programming experience prior to the numerical
analysis course, it may be beyond the scope of the course for the students to do their own coding of
the methods. As stated previously, coding (especially from scratch) can be a very time-consuming
venture, and an instructor may choose to limit the time and energy expended on coding by employing
code modification. Using the code modification approach the instructor would provide the students
with the basic code for a method and let the students modify the code in order to explore a variety of
examples or make changes to the particular method.

Even when using this approach, the instructor has significant flexibility in which the code is used.
The code can be distributed to the class electronically, thus requiring the student to simply run the code
from within MATLAB, for example, by properly formatting function calls in the command window.
Another approach (often used by the author of this article) is to provide the students with a hard-copy
of the code and have them rewrite the code in MATLAB. The benefit of this approach is that, even
though the students are not creating the code, they do experience the process of code creation and
debugging (as they will usually make an error in the transcription). Using either approach, the student
can then be asked to modify the code to use different functions or even change the code to produce
code for another method, such as the secant method in the provided example. Doing the latter would
force the students to consider precisely how the methods differ in what is needed in each case and
how many calculations are being performed.

Consider both the MATLAB code for Newton’s Method shown in figure 2 and the output of the
MATLAB code shown in figure 3. The code is a slightly altered version of the code provided by
Atkinson and Han in their numerical analysis text [2]. Using the code requires only a brief introduc-
tion to the MATLAB environment. A sample assignment using the supplied code could be:

Given the printed copy of the MATLAB code for Newton’s Method,

a. Retype the code, creating the function newtonmeth.m in MATLAB.

b. Use the code to investigate the roots of f (x) = x3 − 4x2 − 5.

c. Modify the code to include the function f (x) = x4 + 4x3 − 18x2 − 108x− 135.

d. Investigate the roots of f (x) = x4 + 4x3 − 18x2 − 108x − 135. Be sure to
consider the effect of a multiple root.

e. Modify the code to create a function secantmeth.m which uses the Secant
Method. Investigate the roots of all the above functions using this code.

Employing the code modification approach can be a very effective way of using a limited amount
of coding to achieve much greater understanding of the methods of numerical analysis and also per-
form some actual calculations utilizing the methods. Modifications of varying extent can be used

111



The Electronic Journal of Mathematics and Technology, Volume 14, Number 2, ISSN 1933-2823

function root = 
newtonmeth(x0,error_bd,max_iterate,index_f)
%
% function
% newtonmeth(x0,error_bd,max_iterate,index_f)
%
% Newton's method for solving f(x) = 0.
%
% The functions f(x) and deriv_f(x) are given below.
% The parameter error_bd is used in the error test
% for the accuracy of each iterate.  The parameter
% max_iterate is an upper limit on the number of
% iterates to be computed.  An initial guess x0 
% must also be given.
%
% For the given function f(x), an example of a
% calling sequence might be the following:
%    root = newtonmeth(3,1.0E-3,10,1)
% The parameter index_f specifies the function to
% be used.
%
% The program prints the iteration values
%      iterate_number, x, f(x), deriv_f(x), 
% error, lambda
% The value of x is the most current initial guess,
% called previous_iterate here, and it is updated
% with each iteration. 
% The value of error is 
%   error = newly_comp_iterate - previous_iterate
% and it is an estimated error for previous_iterate.
% Lambda is a ratio indicator used to identify
% multiple roots.
% Tap the carriage return to continue with the 
iteration.
%
% This is modified code from the text Elementary
% Numerical Analysis by Atkinson and Han, Third
% Edition, John Wiley & Sons, Inc, 2004.

format short e
error = 1;
it_count = 0;
while abs(error) > error_bd & it_count <= 
max_iterate

fx = f(x0,index_f);
dfx = deriv_f(x0,index_f);
if dfx == 0

fprintf(1,'The derivative is zero.\n');
fprintf(1,'Stop.\n')
return

end
x1 = x0 - fx/dfx;
error = x1 - x0;

if it_count > 1
lambda = (x1 - x0)/(x0 - xneg1);

else
lambda = 0;

end

%   Tap the carriage return key to continue
%    iteration = [it_count x0 fx dfx error lambda]

if it_count == 0
fprintf(1, '\nIter        xn            ');
fprintf(1, 'f(xn)         df(xn)       ');
fprintf(1, 'err_est      lambda_n\n');
end

fprintf(1, '%4d    %10.6f    ', it_count, x0);
fprintf(1, '%10.6f    %10.6f    ', fx, dfx);
fprintf(1, '%10.6f    %10.6f\n', error, lambda);

pause
xneg1 = x0;
x0 = x1;
it_count = it_count + 1;

end

fprintf(1, '%4d    %10.6f\n',it_count, x0);

if it_count > max_iterate
fprintf(1,'The number of iterates 

calculated\n');
fprintf(1,'exceeded max_iterate.  An 

accurate\n');
fprintf(1,'root was not calculated.\n');

else
root = x1;
fprintf(1,'\nRESULTS:\n');
fprintf(1,'root = %10.6f\n',root);
fprintf(1,'error bound = %10.6e\n',error);
fprintf(1,'iteration count = %d\n',it_count);

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function value = f(x,index)

% function to define equation for rootfinding
% problem.

switch index
case 1

value = x^3 - 4*x^2 - 5;
case 2

value = x^4 - 3*x^3 - 6*x^2 + 28*x - 24;
case 3

value = x^4-3.2*x^3+0.96*x^2+4.608*x-3.456;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function value = deriv_f(x,index)

% Derivative of function defining equation for
% rootfinding problem.

switch index
case 1

value = 3*x^2 - 8*x ;
case 2

value = 4*x^3 - 9*x^2 - 12*x +28;
case 3

value = 4*x^3-3*3.2*x^2+2*0.96*x+4.608;
end

Figure 2: MATLAB Code
>> root = newtonmeth(3,1.0E-3,10,1);

Iter        xn            f(xn)         df(xn)       err_est      lambda_n
0      3.000000 -14.000000      3.000000      4.666667      0.000000
1      7.666667    210.518519    115.000000 -1.830596      0.000000
2      5.836071     57.536065     55.490602 -1.036861      0.566407
3      4.799209     13.407720     30.703558 -0.436683      0.421158
4      4.362526      1.899473     22.194700 -0.085582      0.195983 RESULTS:
5      4.276944      0.065934     20.661202 -0.003191      0.037288 root =   4.273749
6      4.273753      0.000090     20.604871 -0.000004      0.001367 error bound = -4.362911e-006
7      4.273749 iteration count = 7

Figure 3: Output Generated by MATLAB Code

112



The Electronic Journal of Mathematics and Technology, Volume 14, Number 2, ISSN 1933-2823

depending on the programming capabilities of the students. Thus, this code modification approach
can effectively be used for a rather wide range of student programming experience. Furthermore, the
approach can be coupled with the use of GUIs to provide an even stronger visualization of the meth-
ods. It should be noted that the author currently employs this approach because of the programming
experiences of the students involved as well as time constraints.

2.3 Approach III: Pseudocode Translation
If an instructor desires to put greater emphasis on the actual coding of the methods, he/she may choose
to employ pseudocode translation. In doing such the instructor will provide pseudocode for a given
method and have the students create the actual code in a programming language or environment of
his/her preference. The use of pseudocode offers a great deal of flexibility in that the instructor could
conceivably allow students to use whatever language or environment with which they are familiar and
even make observations about the advantages or disadvantages of each.

Many numerical analysis texts, such as those by Burden and Faires [3] and Gerald and Wheatley
[6] provide excellent pseudocode with the description of each numerical method. For example, the
text by Burden and Faires [3] offers the following for a Composite Simpson’s Rule approximation to

the integral I =
b∫
a

f (x) dx:

INPUT endpoints a, b; even positive integer n
OUTPUT approximation XI to I

Step 1 Set h = (b− a)/n
Step 2 Set XI0 = f(a) + f(b);

XI1 = 0; (Summation of f (x2i−1))
XI2 = 0; (Summation of f (x2i))

Step 3 For i = 1, . . . , n− 1 do Steps 4 and 5
Step 4 Set X = a+ ih
Step 5 If i is even then set XI2 = XI2 + f(X)

else set XI1 = XI1 + f(X)
Step 6 Set XI = h(XI0 + 2 ·XI2 + 4 ·XI1)/3
Step 7 OUTPUT (XI)

STOP

Thus, a sample assignment could be:

Using the provided pseudocode for the Simpson’s Rule approximation,

a. Create a program which, when given an interval [a, b], a value n for the number
of subintervals and a selected function f (x), computes the Simpson’s Rule

approximation to the integral
b∫
a

f (x) dx.

113



The Electronic Journal of Mathematics and Technology, Volume 14, Number 2, ISSN 1933-2823

b. Use the code to approximate
2∫
−1
f (x) dx for f (x) = xex using n =

4, 8, 16, 32, 64 subintervals.

c. Given that the error in the Simpson’s Rule approximation can be estimated by
E ≈ − h4

180
[f ′′′ (b)− f ′′′ (a)] where h is the length of each subinterval, find an

error estimate for each case in part (b) and compare with the results from part
(b).

d. Make an observation about the change in the error compared to the change in the
subinterval length from the results in part (c).

With the given pseudocode the students would have to create working code for the numerical
method. They key aspect here is that they would need to be fairly well-versed in the syntax of the
language or environment which has been chosen. But in actually writing the code, the students should
experience a deeper interaction with the method; they would see more of the details and intricacies of
the method and be allowed greater flexibility in the implementation of the method.

2.4 Approach IV: Code Creation
It is possible that a main goal of a numerical analysis course might be on accurate and efficient
code creation. In such a case, code creation stemming from only a description or derivation of the
numerical method could be employed. For example, a instructor could simply give a derivation of
the general form of a Taylor polynomial of degree n and then ask the students to create code which
would generate any degree Taylor polynomial (based on user input) to approximate a given function.
Furthermore, the instructor could ask for error calculations and plots showing the agreement between
the function and the Taylor polynomials. Thus, a sample assignment could be:

Given the general form of a Taylor polynomial of degree n (centered at the point a)
as

pn (x) =
n∑

j=0

(x− a)j

j!
f (j) (a)

a. Create a program which will calculate Taylor polynomial approximations cen-
tered at a given point a, for the function f (x) = sinx and a given degree
n.

b. Give the program the capability to produce graphs of f (x) = sin x along with
its Taylor polynomials.

c. Use the code to produce graphs of the Taylor polynomials (centered at a = 0) of
degrees n = 1, 3, 5, 11, 15 for f (x) = sinx.

d. Using the point x = π, calculate the error in each Taylor polynomial of part (c).

Obviously, this approach would require the highest level of programming proficiency on the part

114



The Electronic Journal of Mathematics and Technology, Volume 14, Number 2, ISSN 1933-2823

of the students. It would also require the greatest amount of time and energy spent on code creation
and refinement. But the students would experience the most layers of interaction with the numerical
method. Without the outline from provided pseudocode, the students would need to carefully consider
what information is available or necessary as input and also consider what would be the desired output.
They would have to design an algorithm for the calculation, noting any error checks or possible
complications, and in doing so they would have to consider the efficiencies of different algorithms for
the numerical method. For example, considering the Taylor polynomial exercise above, the students
would want to consider the use of nested multiplication when computing the Taylor polynomial as
an efficient computational approach. Finally they would have to design a particular form of output,
possibly including automatically generated plots. As with the pseudocode approach, there is a great
deal of flexibility here as to what programming language or environment is to be used.

3 Conclusion
Allowing students to interact with the computational methods of numerical analysis is a necessary
and informative aspect of a numerical analysis course. But the extent to which such computing ex-
plorations and the coding involved serve as a focus of the course can be varied based on certain
determining factors. The goals of the course, the computing proficiency of the students and the avail-
ability of computing resources all play roles in determining what level of coding will be most effective
in such computer explorations. Ideally, an instructor would likely have the students experience a great
deal of coding so as to gain the most insight into the intricacies of the computational methods. Yet
realistically, such an approach may not be possible, thus we have outlined four different approaches
for incorporating computer explorations into the numerical analysis course.

The use of pre-programmed GUIs (graphical user interfaces) offers an excellent opportunity for
students to get immediate hands-on experience with the numerical methods. This approach can be
used when students lack any programming knowledge or, even more effectively, when paired with
some coding. In order to introduce students with limited programming experience to computational
code, an instructor can use code modification which allows those students to experiment with provided
code. For students capable of writing their own code, an instructor can choose to provide pseudocode
or have the students design their own algorithms. Either of these approaches will offer valuable coding
and debugging experiences in addition to the explorations of the impacts of the numerical methods.

To date, the author been able to gain insight into the effectiveness of these methods. Future plans
involve linking these approaches to educational theories such as those based on Russian psychologist
Lev Vygotsky’s Zone of Proximal Development. Such theories have been explored extensively in
childhood learning but should prove to be informative in a study seeking to measure the effectiveness
of these methods in an undergraduate setting.

Regardless of the approach, students should benefit greatly from experiencing the numerical meth-
ods through the computer explorations. Each individual instructor must decide what level of coding
is appropriate so as to make the explorations as insightful and efficient as possible.

115



The Electronic Journal of Mathematics and Technology, Volume 14, Number 2, ISSN 1933-2823

References
[1] K. Atkinson. Teaching Numerical Analysis Using Elementary Numerical Analysis by K. Atkin-

son and W. Han. Website. http://www.math.uiowa.edu/ atkinson/ena master.html.

[2] K. Atkinson and W. Han. Elementary Numerical Analysis. John Wiley and Sons, Hoboken, NJ,
third edition, 2004.

[3] R. L. Burden and J. D. Faires. Numerical Analysis. Thomson Brooks/Cole, Belmont, CA, eighth
edition, 2005.

[4] J. Carroll. The Role of Computer Software in Numerical Analysis Teaching. ACM SIGNUM
Newsletter, 27(2), April 1992.

[5] G. E. Forsythe. The Role of Numerical Analysis in an Undergraduate Program. The American
Mathematical Monthly, 66(8):651–662, October 1959.

[6] C. F. Gerald and P. O. Wheatley. Applied Numerical Analysis. Pearson Education, Inc., New
York, seventh edition, 2004.

[7] R. Harding and D. Quinney. Computer Illustrated Texts (CITs) for Teaching Numerical Analy-
sis. Computers & Education, 15(1-3), 1990.

[8] M. Kaukic. Open Source Software Resources for Numerical Analysis Teaching. International
Journal for Mathematics Teaching and Learning, October 2005.

[9] D. Ketcheson. Teaching numerical methods with IPython notebooks and inquiry-based learning.
Conference: Python in Science Conference, 2014.

[10] D. E. Knuth. George Forsythe and the Development of Computer Science. Communications of
the ACM, 15(8), August 1972.

[11] MATLAB. version 9.4.0.813654 (R2018a), 2018. The MathWorks Inc.

[12] C. B. Moler. Numerical Computing with MATLAB. Society for Industrial and Applied Mathe-
matics, Philadelphia, 2004.

116


	Introduction
	Various Approaches
	Approach I: GUIs
	Approach II: Code Modification
	Approach III: Pseudocode Translation
	Approach IV: Code Creation

	Conclusion

